Abstract

The synthesis of new styryl dyes derived from 4-pyridine and 4-quinoline and having an ammonioalkyl N-substituent and benzocrown ether moieties of different sizes and with different sets of heteroatoms was developed. Spontaneous "head-to-tail" dimerization of these dyes via the formation of numerous hydrogen bonds between the terminal NH3(+) groups and crown ether moieties was detected in MeCN solutions. The stability constants of the dimeric complexes having pseudocyclic structure were studied by (1)H NMR titration. The most stable complexes (log Kd up to 8.2) were found in the case of dyes with the 18-crown-6 ether moiety, which is most complementary for binding a primary ammonium group. Stacking interaction of the conjugated systems in the dimeric complexes contributes to their stability to a much lesser extent. In dimeric complexes, the ethylene bonds of the dyes are preorganized for stereospecific [2 + 2] photocycloaddition (PCA) induced by visible light. PCA yields only rctt isomers of bis-crown-containing cyclobutane derivatives. The dyes were studied by X-ray diffraction; it was found that the dimeric arrangement is also retained in the crystalline state. The possibility of topochemical PCA of the dyes in single crystals without their destruction was demonstrated. The possibility of retro-PCA of the obtained cyclobutane derivatives to give the starting dyes was shown. The elucidated regularities of PCA can be used to fabricate optical data recording systems based on ammonioalkyl derivatives of crown ether styryl dyes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.