Abstract
The work reported in the preceding article in this series is extended by consideration of polysiloxane–ceramic composites based on atactic poly(methylphenylsiloxane) (PMPS) elastomers instead of poly(dimethylsiloxane). The former is noncrystallizable because of its stereochemically irregular structure, while the latter is crystallizable. In addition, some composites were prepared by the in situ precipitation of titania instead of silica. The resulting materials were characterized using differential scanning calorimetry, equilibrium stress–strain measurements in elongation, small-angle neutron scattering, and transmission electron microscopy. The moduli of the PMPS elastomers were found to increase significantly with increase in amount of either type of filler, with reinforcing upturns at high elongation in the case of the silica. Because the PMPS elastomers were amorphous, it is obvious that strain-induced crystallization is not required for these upturns in modulus. Titania did not give as good reinforcement as did silica, at least in the case of PMPS. Differences in interactions between the polymer and the two fillers are obviously important in this regard, but differences in particle morphology probably also contribute. Specifically, the titania “particles” were significantly larger than the silica particles when observed in TEM, and appeared to be much more porous. The actual domain size as measured by scattering, however, was only approximately 5% larger. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1191–1200, 1998
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.