Abstract

New 2-iminophenanthro[9,10-c]pyrrole ligand precursors containing phenyl or 2,6-diisopropylphenyl groups at the imine nitrogen substituent, 2-arylformiminophenanthro[9,10-c]pyrroles (aryl = phenyl IIa, 2,6-diisopropylphenyl IIb) were synthesized and deprotonated in situ with NaH, originating solutions of the corresponding sodium salts (IVa, IVb). The reaction of these salts with zinc chloride gave the homoleptic bis-ligand Zn(II) complexes [Zn(kappa(2)N,N'-2-arylformiminophenanthro[9,10-c]pyrrolyl)(2)] (aryl = phenyl 2a, 2,6-diisopropylphenyl 2b). The new ligand precursors and complexes were characterized by NMR, elemental analysis, UV/vis spectroscopy, and X-ray crystallography, when possible. The photophysical characterization was carried out using steady-state and picosecond time-resolved luminescence techniques in solution. The influence of the pi-extended conjugation of the condensed phenanthro group on the deprotonated iminopyrrolyl ligands coordinated to Zn(2+) greatly enhances fluorescence quantum yields of the complexes (2a, 2b) in relation to those of their ligand precursors (IIa, IIb). Complex 2a shows emission in the green spectral region (lambda(max) = 494 nm), presenting the highest fluorescence quantum yield (phi(f) = 8.8%). In the case of the complex 2b (phi(f) = 3.9%), the bulkiness of the 2,6-diisopropyl substituents of the arylimino group highly restricts the aryl ring rotation toward coplanarity with the ligand framework, inducing a shift in the emission to the blue region (lambda(max) = 459 nm). The values of the radiative (k(f)) and radiationless rate constants (k(nr)) show that the fluorescence quantum yield enhancement in the complexes results from a 50-fold increase in k(f) values, indicating much more allowed pi-pi* transitions in complexes 2a and 2b than those occurring in the ligand precursors IIa and IIb, with an essentially n-pi* character. These assignments were confirmed by density-functional theory (DFT) and time-dependent DFT (TD-DFT) molecular orbital calculations. Simple 2-aryliminopyrrole ligand precursors (Ia, Ib) and their Zn(II) complexes (1a, 1b) were also prepared to compare their photophysical properties with those of the corresponding 2-aryliminophenanthro[9,10-c]pyrrolyl compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.