Abstract
A new CaFe3O5-type phase NiFe3O5 (orthorhombic Cmcm symmetry, cell parameters a = 2.89126(7), b = 9.71988(21) and c = 12.52694(27) Å) has been synthesised under pressures of 12–13 GPa at 1200 °C. NiFe3O5 has an inverse cation site distribution and reveals an interesting evolution from M2+(Fe3+)2Fe2+O5 to Fe2+(M2+ 0.5Fe3+ 0.5)2Fe3+O5 distributions over three distinct cation sites as M2+ cation size decreases from Ca to Ni. Magnetic susceptibility measurements show successive transitions at 275, ∼150, and ∼20 K and neutron diffraction data reveal a series of at least three spin-ordered phases with evolving propagation vectors k = [0 0 0] → [0 k y 0] → [½ ½ 0] on cooling. The rich variety of magnetically ordered phases in NiFe3O5 likely results from frustration of Goodenough-Kanamori exchange interactions between the three spin sublattices, and further interesting magnetic materials are expected to be accessible within the CaFe3O5-type family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.