Abstract
A pair of selenanthrene-bridged molecular cages have been constructed through a one-step cyclization reaction of a tetrakis(iodo) crown ether with selenium powder. The tubular belt-shaped cage has an intrinsic cavity which can adaptively transform to accommodate electron-deficient guests forming [2]pseudorotaxane complexes. The other product was determined to be an isomeric cage featuring a Möbius strip structure, which exhibits slower twist-migration dynamics than its thianthrene counterpart. The success of using selenanthrene as joints enables an alternative way to structural design and property regulation of molecular cages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.