Abstract

The synthesis and properties of sulfur-doped nanocrystalline diamond films were investigated. The films were deposited by hot-filament chemical vapor deposition on Mo substrates using methane, hydrogen, and hydrogen disulfide. The nanocrystalline nature of the material arises from the induction of continuous secondary nucleation in the chemical vapor deposition environment. Complementary characterization tools were employed in order to obtain a comprehensive and coherent understanding of the correlations between the structural and electronic properties. In particular, sulfur-doped nanocrystalline diamond films show n-type Hall conductivity, enhanced field emission properties, and insensitivity to ion radiation. It was found that n-type doping of the tetragonally-bonded carbon matrix together with a nano network of trigonally-bonded carbon are crucial elements for enhanced field emission from nanocrystalline diamond. These conclusions and the corresponding supporting evidence are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.