Abstract

Abstract Six new triorganotin(iv) complexes of 3-aminobenzoic acid-based Schiff bases, 3-(R′-CH═N)C6H4COOSnR3 (1–6) (R′, R = 5-Br-2-HOC6H3, Ph (1); 3,5-Br2-2-HOC6H2, Ph (2); 4-NEt2-2-HOC6H3, Cy (3); 3-OCH3-2-HOC6H3, Cy (4); 2-HOC10H6, Ph (5); 2-HOC10H6, Cy (6)), have been synthesized by the one-pot reaction of equimolar 3-aminobenzoic acid, substituted 2-hydroxybenzaldehyde (or 2-hydroxy-1-naphthaldehyde) and triorganotin(iv) hydroxide, and characterized by elemental analysis, FT-IR, NMR spectroscopy, and X-ray single crystal diffraction. The NMR data (1 J(119Sn–13C) and 119Sn chemical shifts) suggested that these organotin(iv) complexes are all four-coordinated in CDCl3 solution. In the crystalline state, the tin atoms in 1–4 and 6 are four-coordinated and possess a distorted tetrahedral geometry. Complex 5 with crystalline solvents (CH3OH and CHCl3) exhibits a zigzag chain, and the five coordination atoms on the tin atom are arranged in a trigonal bipyramidal geometry in which the carboxylate oxygen atom and the phenolic oxygen atom of the adjacent ligand occupy the axial positions. In all complexes, the 3-(arylmethyleneamino)benzoate ligands are coordinated with tin atoms in monodentate mode. Their cytotoxicity against two human cancer cell lines (A549 and HeLa), UV-Vis, and fluorescence have been determined, and the results reveal that complexes 1–6 have higher cytotoxicity than cisplatin and may be explored for potential blue luminescent materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call