Abstract

The first alkali-metal/alkaline-earth-metal oxalatophosphate Na4Mg3(HPO4)4(C2O4)·2H2O with monoclinic P21/n space group was successfully synthesized by a conventional solvothermal method. Na4Mg3(HPO4)4(C2O4)·2H2O crystal exhibits a typical three-dimensional structure built by isolated [C2O4] and [HPO4] anionic groups connected by Na and Mg atoms. The HPO42− groups are linked by hydrogen bonds to form an unique one-dimensional zigzag band ∞[HPO4]2-, which exhibits a stable “Mortise-Tenon” structure configuration within the bc plane. Fourier transform infrared (FTIR) spectrum and Raman spectrum confirm the crystal structure of Na4Mg3(HPO4)4(C2O4)·2H2O. UV–visible near infrared (UV–Vis–NIR) diffuse reflectance and band structure calculation indicate that Na4Mg3(HPO4)4(C2O4)·2H2O is an indirect bandgap semiconductor with a bandgap of 4.42 eV. In addition, Na4Mg3(HPO4)4(C2O4)·2H2O shows a moderate birefringence of 0.046 at 550 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.