Abstract
A series of vanadium(III) complexes containing diphosphine ligands of the type R2P(CH2)2PR2 [R = Me (dmpe, 1a), R = Et (depe, 1b), R = Ph (dppe, 1c)] were synthesized by reacting VCl3(THF)3 with 1.3 equiv. of the corresponding ligand. The molecular structures of 1a and 1b were determined by X-ray crystallography, revealing that both are dimers of the type [VCl3(dmpe)]2(μ-P,P′-dmpe) and [VCl3(depe)]2(μ-P,P′-depe), respectively, having one chelating diphosphine ligand, and an additional diphosphine bridging the two vanadium metals. Upon activation with diethylaluminum chloride (Et2AlCl) and in the presence of ethyltrichloroacetate (ETA) the complexes exhibited good activity in the polymerization of ethylene, affording linear, semicrystalline polymers with melting temperatures of about 135 °C. All the complexes (1a–1c) showed from good to excellent activity in the copolymerization of ethylene with norbornene. The resultant copolymers are mainly alternating with a uniform composition and a norbornene incorporation depending on the ligand employed. The substituents at the phosphorus atoms strongly affect the catalytic activity, which increased in the order 1a <1b < 1c with increasing the ligand donor strength, and the comonomer incorporation, while no significant differences were observed in terms of copolymers microstructure and molecular weight. The results are carefully compared with those obtained with the monodentate phosphine VCl3(PMePh2)2 complex and VCl3(THF)3. Overall, we found that the use of diphosphine ligands gave less active catalysts likely because PMePh2 and THF ligands are weakly coordinated to the metal, but (co)polymers with higher molecular weight due to the ability of chelating diphosphines to stabilize the electron-deficient catalytic intermediate, thus reducing the rate of β–hydrogen elimination and subsequent chain-transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.