Abstract

We have synthesized a series of cluster assembled materials in which the building blocks are As(7)(3-) clusters linked by group 12 metals, Zn, Cd and Hg, to investigate the effect of covalent linkers on the band gap energy. The synthesized assemblies include zero dimensional assemblies of [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-), [Hg(2)(As(7))(2)](4-), and [HgAsAs(14)](3-) in which the clusters are separated by cryptated counterions, and assemblies in which [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-) are linked by free alkali atoms into unusual three-dimensional structures. These covalently linked cluster-assembled materials have been characterized by elemental analysis, EDX and single-crystal X-ray diffraction. The crystal structure analysis revealed that in the case of Zn and Cd, the two As(7)(3-) units are linked by the metal ion, while in the case of Hg, two As(7)(3-) units are linked by either Hg-Hg or Hg-As dimers. Optical measurements indicate that the band gap energy ranges from 1.62 eV to 2.21 eV. A theoretical description based on cluster orbital theory is used to provide a microscopic understanding of the electronic character of the composite building blocks and the observed variations in the band gap energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.