Abstract

We have synthesized a series of cluster assembled materials in which the building blocks are As(7)(3-) clusters linked by group 12 metals, Zn, Cd and Hg, to investigate the effect of covalent linkers on the band gap energy. The synthesized assemblies include zero dimensional assemblies of [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-), [Hg(2)(As(7))(2)](4-), and [HgAsAs(14)](3-) in which the clusters are separated by cryptated counterions, and assemblies in which [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-) are linked by free alkali atoms into unusual three-dimensional structures. These covalently linked cluster-assembled materials have been characterized by elemental analysis, EDX and single-crystal X-ray diffraction. The crystal structure analysis revealed that in the case of Zn and Cd, the two As(7)(3-) units are linked by the metal ion, while in the case of Hg, two As(7)(3-) units are linked by either Hg-Hg or Hg-As dimers. Optical measurements indicate that the band gap energy ranges from 1.62 eV to 2.21 eV. A theoretical description based on cluster orbital theory is used to provide a microscopic understanding of the electronic character of the composite building blocks and the observed variations in the band gap energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call