Abstract

In α-cationic phosphines, at least one of the three substituents on phosphorus corresponds to a cationic (normally, but not always heteroaromatic) group, which is attached without any spacer to the phosphorus atom by a relatively inert P-C bond. This unique architecture confers to the resulting ligand strong acceptor properties, which frequently surpass those of traditional acceptor ligands such as phosphites or polyfluorinated phosphines. In addition, the fine-tuning of the stereoelectronic properties of α-cationic phosphines is also possible by judicious selection of the number and nature of the cationic groups. The opportunities offered in catalysis by α-cationic ligands arise from this ability to deplete electron density from the metals they coordinate. Thus, if in a hypothetical catalytic cycle the step that determines the rate is facilitated by an increase of the Lewis acidity at the metal center, then an acceleration of the whole process is expected by their use as ancillary ligands. Interestingly, this situation is found more frequently than one might think; many common elementary steps involved in catalytic cycles, such as reductive eliminations, coordination of substrates to metals, or attack of nucleophiles to coordinated substrates, belong to this category and are often fostered by electron poor metal centers. In this regard, our group has observed remarkable ligand acceleration effects by the employment of α-cationic phosphines in Au(I)- and Pt(II)-promoted hydroarylation and cycloisomerization reactions. These results seem to be general in π-acid catalysis when the nucleophile used is not especially electron rich because then their attack to the activated alkene or alkyne is normally rate determining. On the other hand, the use of cationic phosphines also presents drawbacks that limit their range of application. As a general rule, the reduced σ-donation from the phosphine is not compensated by the increased π-back-donation from the metal making the resulting phosphorus-metal bond weaker, and the corresponding catalysts more prone to decomposition. This can be critical when di- or tricationic ancillary ligands are used. In addition, the positively charged groups occasionally participate in undesired side reactions, with either the metal or the substrate, which are not present when their neutral congeners are used. Stimulated by both the fundamental questions regarding bonding and their valuable applications in catalysis, the chemistry of α-cationic phosphines has experienced an enormous growth during the last years. This Account describes our group's efforts and those of others to understand their coordination behavior, study their reactivity, and further develop their range of applications in catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.