Abstract

New triorganotin(IV) derivatives of dipeptides with general formulae, R3Sn(HL), where R = Me and Ph, and HL is the monoanion of histidinylalanine and histidinylleucine, have been synthesized and characterized on the basis of infrared (IR), multinuclear NMR (1H, 13C, and 119Sn), and 119Sn Mössbauer spectroscopic studies. These derivatives exhibit distorted trigonal-bipyramidal geometry around tin in which dipeptide anion acts as bidentate ligand coordinating through carboxyl oxygen and amino nitrogen. Ph3Sn(HHis-Ala), Ph3Sn(HHis-Leu), and previously reported Ph2Sn(His-Ala), Me2Sn(His-Ala), n-Oct2Sn(His-Ala), Me2Sn(His-Leu), n-Oct2Sn(His-Leu), Ph3Sn(HTyr-Phe), Ph2Sn(Tyr-Phe), Bu2Sn-(Tyr-Phe), and n-Oct2Sn(Tyr-Phe) along with standard drugs, viz. phenyl butazone and indomethacin were screened for in vivo anti-inflammatory activity and acute toxicity (LD50). Diorganotin(IV) derivatives are more active than triorganotin(IV) derivatives. Me2Sn(His-Leu) shows the highest activity. Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.