Abstract

Because of the great pharmacological potential of the pyrimidine motif, novel C-5 substituted N-3 acyclic and O-4 acyclic pyrimidine derivatives were prepared as an interesting class of compounds for biological evaluation. Introduction of the 2,3-dihydroxypropyl (DHP) and penciclovir (PCV)-like side chains to 2-methoxypyrimidin-4-one (2) afforded a mixture of N- and O-acyclic pyrimidine nucleosides in the ratio of 54: 29 (3:4) and 57:21 (5:6) with N-3 isomer being dominant. Distinction between N- and O-alkylated pyrimidine moiety was deduced from extensive experimental FT-IR, HPLC-MS and 1D (1H, 13C) and 2D (COSY, HMQC and HMBC) NMR analyses. The N-, O-regioisomers were also examined by computational method at density functional theory (DFT) RB3LYP/6-31G(d), 6-31G∗∗ and 6-31+G∗ levels. DFT global chemical reactivity descriptors (total energy, chemical hardness, electronic chemical potential and electrophilicity) were calculated for the isomers and used to predict and describe their relative stability and reactivity. The chemical reactivity indices were related to the C2N3C4 bond angle. Theoretical predictions can be used to compare chemical reactivity and stability with future biological evaluation and behaviour of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.