Abstract

Aluminium complexes bearing sterically bulky benzotriazole-phenoxide ligands are synthesized and characterized structurally. The reaction of 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol ((CMe2Ph)BTP-H) or 2-(2H-benzotriazol-2-yl)-4,6-di-tert-butylphenol ((t-Bu)BTP-H) with AlMe(3) (1.2 molar equiv.) in toluene yields [((CMe2Ph)BTP)AlMe(2)] (1) or [((t-Bu)BTP)AlMe(2)] (2) as a four-coordinated monomeric aluminium complex. Compound 1 reacts further with (CMe2Ph)BTP-H in a stoichiometric proportion, affording penta-coordinated monomeric aluminium methyl complex [((CMe2Ph)BTP)(2)AlMe] (3). Complex 3 is also obtained directly upon treatment of AlMe(3) with (CMe2Ph)BTP-H (two molar equiv.) in refluxing toluene in high yield. In the presence of H(2)O (half a molar equiv.), hydrolysis of 3 in a mixed solvent of THF and toluene at ambient temperature affords [{((CMe2Ph)BTP)(2)Al}(2)(μ-O)] (4), in which the oxo ligand acts as a chelating group linearly bridging two aluminium centers. Air-stable alumoxane 4 is an efficient catalyst for the ring-opening polymerization of L-lactide (L-LA) in the presence of 9-anthracenemethanol (9-AnOH). Complex 4 catalyzes the polymerization of L-LA in a controlled manner, yielding PLLAs with the expected molecular weights and narrow polydispersity indices (PDIs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call