Abstract

Two novel triorganotin carboxylate complexes of the biologically active urocanic acid have been synthesized and characterized. Elemental analysis, melting point, spectroscopic techniques – IR, 1H, 13C and 119Sn NMR – mass spectrometry and X‐ray diffraction studies have been used for structural characterization. Crystal structures of the tin(IV) derivatives show that urocanic acid acts as a bridging bidentate ligand through its imidazole nitrogen atom and its carboxylic group, producing a polymeric one‐dimensional chain. The molecular structures of the complexes, catena‐poly‐tri(n‐butyl)tin(IV) 3‐(3H‐imidazol‐4‐yl)prop‐2‐enoate (1) and catena‐poly‐triphenyltin(IV) 3‐(3H‐imidazol‐4‐yl)prop‐2‐enoate (2), present a distorted trigonal–bipyramidal configuration. This is further confirmed by 119Sn NMR in the solid state. The tin(IV) derivatives form double‐stranded ribbons via N―H…O―H bonds. Nevertheless, the compounds are essentially monomeric in solution, with a tetrahedral configuration as observed by 119Sn NMR in solution. The cytotoxic activity of the titled compounds has been tested against six human cell lines and the corresponding IC50 values are reported. Both tin(IV) compounds have a high to very high in vitro cytotoxic activity against the tumor cell lines K562, HCT‐15 and MCF‐7. Compound 1 is 86 times more active than cisplatin in the HTC‐15 cell line. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call