Abstract
The reaction of 2-ethylimidazole and zinc formate monohydrate in 1:2 ratio in toluene leads to the formation of bis(2-ethylimidazole)bis(formato)zinc(II)-water (1/1), [Zn(N2H8C5)2(OCHO)2]·H2O, 1 which has been characterized by several techniques, including elemental and thermal analyses, IR, 1HNMR and 13CNMR spectroscopies, single crystal X-ray diffraction and DFT studies. The results obtained show that this complex crystallizes in the orthorhombic crystal system of the Pbca space group, with cell parameters a = 14.7230(2) A, b = 7.3880(10) A, c = 29.0843(4) A, α = 90°, β = 90°, γ = 90°, V = 3163.73 A3 and Z = 8. The zinc center is bound to two molecules of 2-ethylimidazole, two formate molecules in a tetrahedral coordination geometry. One water of crystallization is present in the coordination sphere of the compound. Its molecular crystalline structure is strengthened by O/N-H…O, O-H…π, O-H…H, C-H…O, H…π, π…O and π…π interactions. The optimized structure, frontier molecular orbitals, global reactivity descriptors, molecular electrostatic potential, natural bond orbitals and the Mulliken atomic charges were investigated through theoretical studies.
Highlights
The reaction of 2-ethylimidazole and zinc formate monohydrate in 1:2 ratio in toluene leads to the formation of bis(2-ethylimidazole)bis(formato)zinc(II)-water (1/1), [Zn(N2H8C5)2(OCHO)2]·H2O, 1 which has been characterized by several techniques, including elemental and thermal analyses, IR, 1HNMR and 13CNMR spectroscopies, single crystal X-ray diffraction and density functional theory (DFT) studies
The optimized structure, frontier molecular orbitals, global reactivity descriptors, molecular electrostatic potential, natural bond orbitals and the Mulliken atomic charges were investigated through theoretical studies
This is realized through the synthesis, characterization and computational studies of bis(2-ethylimidazole)bis(formato)zinc(II)-water (1/1), [Zn(N2H8C5)2(OCHO)2]·H2O, 1
Summary
Some of these metals being transition elements are used by cells in structurally-constrained binding sites in metalloproteins, where they carry out structural, regulatory or catalytic functions [1]. In order to expand this family of compounds, we again report the reproduction of the active site of this zinc enzyme by replacing the isopropyl substituent on the imidazole ring in [3] by an ethyl residue. This is realized through the synthesis, characterization and computational studies of bis(2-ethylimidazole)bis(formato)zinc(II)-water (1/1), [Zn(N2H8C5)2(OCHO)2]·H2O, 1
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.