Abstract
The antibacterial and antibiofilm activities of two new ruthenium complexes against E. coli, S. aureus, P. aeruginosa PAO1 (laboratory strain) and P. aeruginosa LES B58 (clinical strain) were evaluated. Complexes, mer-[RuIII (2-bimc)3 ] ⋅ H2 O (1) and cis-[RuIV Cl2 (2,3-pydcH)2 ] ⋅ 4H2 O (2), were obtained using aromatic carboxylic acid ligands, namely, 1H-benzimidazole-2-carboxylic acid (2-bimcH) and pyridine-2,3-dicarboxylic acid (2,3-pydcH2 ). Compounds were physicochemically characterized using X-ray diffraction, Hirshfeld surface analysis, IR and UV/VIS spectroscopies, as well as magnetic and electrochemical measurements. Structural characterization revealed that Ru(III) and Ru(IV) ions in the complexes adopt a distorted octahedral geometry. The intermolecular classical and weak hydrogen bonds, and π⋅⋅⋅π contacts significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. Biological studies have shown that the Ru complexes inhibit the growth of bacteria and biofilm formation by the tested strains and the complexes seem to be a potential as antimicrobial agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.