Abstract

Six functional multidentate ligands: 2,3-bis(3,5-dimethyl-1H-pyrazol-1-yl) quinoxaline, L1, 2,3-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-nitroquinoxaline, L2, 2,3-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylquinoxaline, L3, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-3-hydrazinyl-6-nitroquinoxaline L4, 2-chloro-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylquinoxaline, L5, 2-chloro-3-(3,5-dimethyl-1H-pyrazol-1-yl) quinoxaline, L6, and a new copper (II) complex, were prepared and evaluated for their catecholase activities at aerobic conditions. We found that, the reaction rate depends on: The nature of the substituents in the quinoxaline ring, counter anion, metal, concentration of ligand and the used solvent. The complex obtained in-situ from reaction of one equivalent of ligand L1 and two equivalents of Cu(CH3COO)2 in methanol showed the highest oxidation rate activity (V = 33.48 μmol L−1. min−1). In addition, geometry optimizations of the complexes in order to get better insight into the geometry and the electronic structure and chemical reactivity were carried out by means of DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.