Abstract

MCu2O3 (M=Ca and Co) system has two-leg spin ladder structure similar to that of the prototype SrCu2O3 system except that the rungs are buckled with an angle of 123° and 105° for CaCu2O3 and CoCu2O3 compounds, respectively. We have synthesized powder samples of (Ca1−xCox)Cu2O3 (x=0.00–1.00) by the solid state reaction method and their structural and magnetic properties have been investigated. All the synthesized compounds crystallize in orthorhombic structure with space group Pmmn. Lattice parameters of (Ca1−xCox)Cu2O3 decrease with the increase in Co content. DC magnetic susceptibility χ(T) results of the end products CaCu2O3 and CoCu2O3 show antiferromagnetic transition (TN) at 27 and 215K, respectively. Co doping into (Ca1−xCox)Cu2O3 enhances its TN systematically with increasing Co concentration. The χ(T) of CoCu2O3 shows a broad transition with the peak temperature around 215K and it was found to be field independent up to 90kOe. The ambiguity concerning the transition was ruled out by recording the temperature dependent X-ray diffraction pattern on CoCu2O3 system, which indicated that there is no structural transition in the investigated temperature range of 115–300K. Further, specific heat measurement on CoCu2O3 confirms the magnetic phase transition by the appearance of a sharp peak at 215K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.