Abstract
Ca0.9Gd0.1MnO3 nanopowders with perovskite type crystal structure were synthesized by modified glycine nitrate procedure. Nanopowders were prepared by combining glycine with metal nitrates and/or metal acetates in their appropriate stoichiometric ratios. Modification of the procedure was performed by partial replacement of nitrates by acetates, in order to control the burn-up reaction. Obtained Ca0.9Gd0.1MnO3 powders were calcinated in the temperature interval from 850°C to 950°C for 10min. Properties such as phase evolution, lattice parameters, chemical composition and magnetic properties were monitored by DTA, X-ray diffraction, SEM/EDS and magnetic measurements. Magnetic measurements performed at the sample with the smallest crystallite size showed that a 10% of Gd3+ substituted Ca2+ ions changes antiferromagnetic properties of CaMnO3 by the introduction of ferromagnetic interaction due to a double exchange between Mn3+ and Mn4+ ions. Presence of competing interactions and their randomness lead to a formation of a spin glass state below Neel temperature TN=110K. From the high temperature magnetic susceptibility measurements effective magnetic moment of manganese ions is determined which lies between the values for Mn3+ and Mn4+ ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.