Abstract

The triribbed-functionalized cobalt(II,III) and ruthenium(II) clathrochelate derivatives of the vic-dioximes with two nitrogen or sulfur atoms in α-positions to π-conjugated diazomethine chelate fragments of a macrobicyclic framework were obtained in moderate yields under mild and high dilution conditions by nucleophilic substitution of six reactive chlorine atoms of the boron-capped macrobicyclic cobalt and ruthenium(II) precursors with N 2- and S 2-dinucleophiles (ethylenediamine and the corresponding α-dithiols in the presence of triethylamine, respectively). The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV–Vis, 1H and 13C{ 1H} NMR and EPR spectroscopies, magnetochemistry and X-ray crystallography. The MN 6-coordination polyhedra of all the X-ray studied clathrochelates possess a slightly distorted trigonal prismatic geometry. The encapsulated cobalt(II) ions are shifted from the centers of the cavities formed by the macrobicyclic ligand due to the Jahn–Teller distortion, while the ruthenium and iron(II) ions in their clathrochelate analogs do occupy these centers. The main geometrical parameters of the macrobicyclic frameworks vary with Shannon radius of an encapsulated metal ion. In the case of the tris-ethylenediamine cobalt(III) clathrochelate, the field strength of the macrobicyclic amine ligand is essentially lower than those for their aromatic and aliphatic analogs because of the negative σ para -effect of the ribbed alkylamine substituents. The magnetometry and EPR data confirmed the low-spin character of the cobalt(II) complexes synthesized. The electrochemically generated oxidized cobalt clathrochelates are stable in the CVA time scale, whereas their ruthenium- and iron-containing analogs as well as the reduced forms of all the cobalt, ruthenium and iron complexes obtained are unstable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call