Abstract

The reaction of hydrated magnesium or calcium 4-nitrobenzoate (4-nba) generated in situ, with imidazole (Im) results in the formation of the complexes [Mg(H2O)2(Im)2(4-nba)2] 1 and [Ca(H2O)3(Im)(4-nba)2]·Im 2, which exhibit the same metal:4-nba:Im ratio but different degrees of hydration. Complex 1 crystallizes in the triclinic Pī space group and the Mg atom is located on an inversion centre, while 2 crystallizes in the monoclinic P21/c space group and all atoms are located in general positions. In 1 the Im ligands, which are trans to each other, are coordinated to Mg, while 2 contains coordinated as well as free Im. The monodentate 4-nba ligands are disposed trans to each other in 1, while they adopt a cis orientation in 2 resulting in different supramolecular structures. Complex 1 exhibits two types of H-bonding interactions namely O-H···O and N-H···O, while in 2 three varieties of H-bond, viz. O-H···O, N-H···O and O-H···N are observed. The Im ligand ligand functions as a bifurcated H-bond donor in 1 while the O atom of the nitro group functions as a H-bond acceptor. In contrast, the nitro group in 2 is not involved in any H-bonding interactions. The free Im in 2 functions as a bifurcated acceptor and forms an extended chain linking adjacent complex molecules. The chains thus formed are further cross-linked with the aid of H-donor bonds from both the free as well as the coordinated Im. Both 1 and 2 exhibit π-π stacking interactions. Complex 1 is thermally more stable as compared to 2, and both complexes can be dehydrated to the corresponding anhydrous complexes by heating at 140 and 100°C respectively. At elevated temperatures, both the complexes can be pyrolysed to the corresponding oxide. The anhydrous complexes can be rehydrated to obtain the starting hydrated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.