Abstract

The extensive use of insecticides raises a great risk to humans because these compounds are human carcinogens and their agricultural application causes contamination of natural free water. One of the most applied insecticide is carbofuran, and the present study aims at removing it from water using novel mixed metal–metal-organic frameworks (M−MOFs) based on Ca-benzene-1,3,5-tricarboxylic acid (Ca-BTC). Different “guest” metal ions (M = Mn, Ni, Co, Cu; each at 20 %) and Ca (at 80 %) were mixed together with the organic linker BTC to produce Ca-M−BTC. Different geometrical shapes of Ca-M−BTC were observed depending on the type of the added “guest” metal ion. The EPR spectrum of both Ca-Cu-BTC and Ca-Co-BTC shows a doublet peak with line-broadening at g// = 2.34 and a broad peak at g ∼ 2.1, respectively, and the narrow peak provided information about the chelating atoms of the paramagnetic Cu2+ atom. Carbofuran adsorption follows the second order model and a Langmuir isotherm. The adsorption capacity of carbofuran reached 627.26 and 736.31 mg/g onto Ca-Co-BTC and Ca-Cu-BTC, respectively. Efficient carbofuran adsorption on these Ca-M−BTCs, hence removal from water, can be proceeded via both of physical deposition in pores and chemical interaction via H-bonding, coordination and π – π interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.