Abstract

The molecular structure and vibrational modes of 3-acetylcoumarin oxime carbonate (abbreviated as 3-ACOC) have been investigated by FT-IR, FT-Raman, NMR spectra and also by computational methods using HF and B3LYP with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths, bond angles and dihedral angles) were in good agreement with the corresponding experimental values of 3-ACOC. The calculated vibrational frequencies of normal modes from DFT method matched well with the experimental values. The complete assignments were made on the basis of the total energy distribution (TED) of the vibrational modes. NMR (1H and 13C) chemical shifts were calculated by GIAO method and the results were compared with the experimental values. The other parameters like dipole moment, polarizability, first order hyperpolarizability, zero-point vibrational energy, EHOMO, ELUMO, heat capacity and entropy have also been computed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.