Abstract
Nine rhenium(i) complexes possessing three carbonyl groups together with a bidentate coordinated 2,6-di(thiazol-2-yl)pyridine derivative were synthesized to examine the impact of structure modification of the triimine ligand on the photophysical, thermal and electrochemical properties of [ReCl(CO)3(4-Rn-dtpy-κ2N)]. The Re(i) complexes were fully characterized using IR, 1H and 13C, HRMS-ESI and single crystal X-ray analysis. Their thermal properties were evaluated using DSC and TGA measurements. Photoluminescence spectra of [ReCl(CO)3(4-Rn-dtpy-κ2N)] were investigated in solution and in the solid state, at 298 and 77 K. Both emission wavelengths and quantum yields of [ReCl(CO)3(4-Rn-dtpy-κ2N)] were found to be structure-related, demonstrating a crucial role of the substituent attached to the 2,6-di(thiazol-2-yl)pyridine skeleton. In order to fully understand the photophysical properties of [ReCl(CO)3(4-Rn-dtpy-κ2N)], density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. Furthermore, the complexes which showed appropriate solubility in chloroform were tested as an emissive active layer in OLED devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.