Abstract
Seven new diorganotin(IV) complexes, [Me2SnL] (1), [Et2SnL] (2), [(n-Bu2SnL] (3), [Ph2SnL] (4), [(n-Oct2SnL] (5), [tert-Bu2SnL] (6), and [n-BuClSnL] (7) have been synthesized from the reaction of N′-(2-hydroybenzylidene)-4-tert-butylbenzohydrazide (H2L) with the corresponding diorganotin(IV) dichloride/oxide or organotin(IV) chloride dihydroxide. The synthesized compounds were structurally characterized by FT-IR, multinuclear NMR (1H and 13C) spectroscopies, elemental analysis, mass spectrometry, DFT/(B3LYP) calculations, and, for ligand single crystal, X-ray diffraction analysis. Spectroscopic evidence affirms coordination of ligand to the dialkyltin(IV) moieties through oxygen nitrogen donor sites in iminol form. The 1 J(119Sn, 13C) coupling constants, 584-655 Hz and 2 J(119Sn-1H) coupling constant, 79 Hz for complex (1), suggest pentacoordination around Sn atom in solution. Single-crystal X-ray structure of ligand show its existence in amido form. Supramolecular architecture mediated by N(2)-H···O(2) and C-H…π interactions is formed in solid state. The DFT calculations have been performed to obtain various structure-based molecular properties as well as to support experimental results. The synthesized compounds were screened in vitro against various human pathogenic microbial strains. Escherichia coli and Staphylococcus aureus were most visibly inhibited by complexes (4) and (7). Highest antifungal activity was shown by compound (6) against Fusarium solani. Compound (3) displayed highest cytotoxicity among synthesized compounds with LD50 0.44μg/mL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.