Abstract

Several new sulfamidocarbonyloxyphosphonates were prepared in two steps, namely carbamoylation and sulfamoylation, by using chlorosulfonyl isocyanate (CSI), α-hydroxyphosphonates, and various amino derivatives and related (primary or secondary amines, β-amino esters, and oxazolidin-2-ones). All structures were confirmed by 1H, 13C, and 31P NMR spectroscopy, IR spectroscopy, and mass spectroscopy, as well as elemental analysis. Eight compounds were evaluated for their in vitro antibacterial activity against four reference bacteria including Gram-positive Staphylococcus aureus (ATCC 25923), and Gram-negative Escherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 700603), Pseudomonas aeruginosa (ATCC 27853), in addition to three clinical strains of each studied bacterial species. Compounds 1a–7a and 1b showed significant antibacterial activity compared to sulfamethoxazole/trimethoprim, the reference drug used in this study.

Highlights

  • IntroductionThe synthesis and reactivity of sulfamides (sulfonyl analogues of ureas) have attracted much interest in the last decades [1]

  • The synthesis and reactivity of sulfamides have attracted much interest in the last decades [1]

  • The synthetic route for the preparation of a novel series of sulfamidocarbonyloxyphosphonates sulfamidocarbonyloxyphosphonates 1a–8a is outlined in Scheme 1

Read more

Summary

Introduction

The synthesis and reactivity of sulfamides (sulfonyl analogues of ureas) have attracted much interest in the last decades [1]. A large number of sulfamide derivatives have been reported to show biological activities such as anti-mycobacterial, anticonvulsant, anti-hypoglycemic, anticancer, and enzyme inhibition (e.g., carbonic anhydrase I, HIV-1 protease, elastase, carboxypeptidase A) [2,3,4,5,6,7,8,9]. These important compounds have been synthesized by various routes, most of them using the reaction of a sulfonyl chloride with ammonia or primary and secondary amines [10]. Many synthetic efforts have focused on sulfonamide derivatives that have shown great potency to inhibit important biological targets such as cox-2, carbonic anhydrase (e.g., isoenzymes I, II, VII, IX), and NaV1.7, or to block, for example, the Chlamydia fatty acid synthesis [12,13,14,15,16]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.