Abstract

New diphenyltin(IV) complexes of empirical formula, [Sn(C 6H 5) 2( NS)Cl] ( NS = anionic forms of the acetone Schiff bases of S-methyl or S-benzyldithiocarbazate) have been prepared and characterized by IR, NMR and Mössbauer spectroscopic techniques. The crystal and molecular structures of the acetone Schiff bases of S-methyldithiocarbazate (Hacsme) and S-benzyldithiocarbazate (Hacsbz) and their tin(IV) complexes have been determined by X-ray diffraction. In the solid state, both the Schiff bases exist in their thioketo tautomeric forms with the azomethine nitrogen atom trans to the thione sulfur atom but in the tin(IV) complexes they are present in their deprotonated ene-thiolate forms being coordinated to the tin atom as bidentate chelating agents via the azomethine nitrogen and thiolate sulfur atoms. The tin atom adopts a five-coordinate, approximately trigonal bipyramidal geometry, with the thiolate sulfur atom of the Schiff base and the two phenyl groups occupying the equatorial positions. The azomethine nitrogen atom and the chlorine ligand occupy axial positions. The distortion from a regular trigonal bipyramidal or a square-pyramidal geometry is attributed to the restricted bite sizes of the five-membered chelate rings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call