Abstract
An innovative charge-transfer complex between the Schiff base 2-((2-hydroxybenzylidene) amino)-2-(hydroxymethyl) propane-1,3-diol [SAL-THAM] and the π-acceptor, chloranilic acid (CLA) within the mole ratio (1:1) was synthesized and characterized aiming to investigate its electronic transition spectra in acetonitrile (ACN), methanol (MeOH) and ethanol (EtOH) solutions. Applying Job`s method in the three solvents supported the 1:1 (CLA: SAL-THAM) mole ratio complex formation. The formation of stable CT- complex was shown by the highest values of charge-transfer complex formation constants, KCT, calculated using minimum-maximum absorbance method, with the sequence, acetonitrile > ethanol > methanolDFT study on the synthesized CT complex was applied based on the B3LYP method to evaluate the optimized structure and extract geometrical and reactivity parameters. Based on TD-DFT theory, the electronic properties, 1H and 13C NMR, IR, and UV-Vis spectra of the studied system in different solvents showing good agreement with the experimental studies. MEP map described the possibility of hydrogen bonding and charge transfer in the studied system. Finally, a computational approach for screening the antiviral activity of CT - complex towards SARS-CoV-2 coronavirus protease via molecular docking simulation was conducted and confirmed with molecular dynamic (MD) simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.