Abstract

A new series of Schiff base ligands (L1–L3) and their corresponding fluorine/phenyl boron hybrid complexes [LnBF2] and [LnBPh2] (n=1, 2 or 3) have been synthesized and well characterized by both analytical and spectroscopic methods. The Schiff base ligands and their corresponding fluorine/phenyl boron hybrid complexes have been characterized by NMR (1H, 13C and 19F), FT-IR, UV–Vis, LC–MS, and fluorescence spectroscopy as well as melting point and elemental analysis. The fluorescence efficiencies of phenyl chelate complexes are greatly red-shifted compared to those of the fluorine chelate analogs based on the same ligands, presumably due to the large steric hindrance and hard π→π∗ transition of the diphenyl boron chelation, which can effectively prevent molecular aggregation. The boron hybrid complexes were applied to the transfer hydrogenation of acetophenone derivatives to 1-phenylethanol derivatives in the presence of 2-propanol as the hydrogen source. The catalytic studies showed that boron hybrid complexes are good catalytic precursors for transfer hydrogenation of aromatic ketones in 0.1M iso-PrOH solution. Also, we have found that both steric and electronic factors have a significant impact on the catalytic properties of this class of molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call