Abstract

Complexes of zinc(II) of general composition [Zn2(L)X2(H2O)4]nH2O have been synthesized [L=1,3-dipyridyl-2,4-dioxo-2′,4′-bis(2-iminopyridine)cyclodi-phosph(V)azane and X=NO3−; n=2, OAc−; n=1, SO42−; n=2 and Cl−; n=2]. The elemental analysis, molar conductance measurements, mass, IR, UV, NMR (1H and 31P), TGA, DTA, SEM and XRD spectral studies of the compounds led to the conclusion that the cyclodiphosph(V)azane ligand (H2L) acts as a bidentate manner per zinc ion. The cyclodiphosph(V)azane ligand forms hexa-coordinated complexes having octahedral geometry for Zn(II) complexes. The elemental analyses and mass spectral data have justified the [Zn2(L)X2(H2O)4]nH2O composition of complexes. Infrared spectra of the zinc complexes indicate deprotonation and coordination of the imine NH. It also confirms that nitrogen atoms of the pyridine group contribute to the complexation. The X-ray powder diffraction (XRD) was performed of [Zn2L(SO4)2(H2O)4]2H2O complex. The XRD patterns indicate crystalline nature for the [Zn2L(SO4)2(H2O)4]2H2O complex. The measured low molar conductance values in dimethylformamide indicate that the complexes are non-electrolyte nature. The surface morphology (SEM) of the cyclodiphosph(V)azane ligand and the [Zn2L(NO3)2(H2O)4]2H2O complex were studied by SEM. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modeling the geometries of cyclodiphosph(V)azane ligand H2L and its zinc(II) complexes were fully optimized with respect to the energy using the 6-31G basis set. The cyclodiphosph(V)azane ligand and the zinc(II) complexes have been measured in vitro to judge their antibacterial (Escherichia coli and Staphylococcus aureus) and antifungal (Aspergillus niger and Pencillium chrysogenum) activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.