Abstract
The present study deals with the in silico and in vitro studies of DBDP derivatives, which is formed from the Michal-addition reaction of DihydroBenzo[b]Dioxin Chalcone Derivatives(DBDD) with hydrazine hydrate and carboxyethane. The DBDD were synthesized via Claisen condensation between substituted aldehyde and 1,4-(benzodioxan-6-yl)-methyl ketone. The newly arrived compounds were characterized by IR and NMR spectra. The structurally confirmed synthesized compounds were screened against 1UAG microbial protein, 1OQA cancer protein using auto dock software, and ADME properties also found by using (in silico) Swissadme and Molinspiration online tools. All the newly arrived DBDP compounds have passed the acceptable values of ADME (drug-likeness), medicinal property, and lead likeness in ADME prediction. Compound DBDP-9 scored better values in drug-likeness. It obeys the five basic rules (Lipinski, Ghose, Verber, Egan, and Muegge) of medicinal chemistry property, passed the PAINS, Brenk filters with 0 violation, and also have better lead likeness value. All the other compounds in this series also passed the above-mentioned properties with 1 or 2 violations only present in PAINS and Brenk filter. This theoretical results incitement to performed docking and in vitro studies of the DBDP derivatives. Docking studies results that the good I.S averse to 1 UAG bacterial protein than standard drugs and also give impact values in the docking against 1OQA breast cancer protein. Overall observation from the above studies, DBDP-9 has a maximum oral absorption value 91.36% with 0 violation alert in drug-likeness, medicinal property, and pharmacokinetics filter. DBDP-4 has a good I.S (-8.8), DBDP-2 has 4 numbers of HBI as standard, and all the DBDP 1-9 compounds have higher I.S than the standard and also have impact I.S against 1OQA breast cancer protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.