Abstract

Two free base meso-tetraphenylporphyrin-fullerene dyads, H2PMe-C60, H2POMe-C60, and their zinc complexes, ZnPMe-C60 and ZnPOMe-C60, which the para positions of the meso-tetrasubstituted phenyl groups of the porphyrin core were substituted by methyl(-Me) and methoxyl(-OMe) groups respectively, were synthesized. The porphyrin unit in the synthesized dyads is directly linked to the fullerene entity through the pyrrole-β- position rather than through the traditionally meso-substituted phenyl group, which may be more favorable for electron communication between the donor and the acceptor. They are fully characterized by mass spectrometry, nuclear magnetic resonance, infrared spectroscopy and ultraviolet visible spectroscopy. Experimental results obtained from steady-state fluorescence spectroscopy and cyclic voltammetry show that the coordination of the zinc ions lead to an increase in the singlet excited state energy of the metallated porphyrin unit by about 0.15 eV, and to a reduce in the HOMO level and in the HOMO-LUMO energy gap. The molecular reorganization energy decreases after the electron-donating groups of -Me or -OMe attaching to the para position of the meso-phenyl group of the porphyrin moiety. The results of the energy calculations show that photoinduced electron transfer is thermodynamically favorable for the synthesized porphyrin-C60 dyads. There exists a competition between the photoinduced electron transfer and energy transfer processes from the first singlet excited state of porphyrin core to fullerene moiety. The photoinduced electron transfer rate constant of the dyads were calculated according to Marcus theory. The results indicate that the coordination of metal zinc ions lead to great increase in the electron transfer rate constant. Further, the photoinduced electron transfer rate constant increases in the order ZnP-C60, ZnPMe-C60, ZnPOMe-C60.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.