Abstract

A series of tertiary amine containing PHMEMA-PEG-PHMEMA ABA triblock copolymers were synthesized by atom transfer radical polymerization (ATRP) using bromine-capped poly(ethylene glycol) (Br-PEG-Br) and 2-(hexamethyleneimino)ethyl methacrylate (HMEMA) as macro-initiator and monomers, respectively. The chemical structures and molecular weights of triblock copolymers were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behaviors of copolymers in different pH conditions were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Triblock copolymers self-assembled into micelles in water (pH 7.4) and the micelles disassembled at acidic pH (pH 5.0). Anticancer drug doxorubicin (DOX) was used as a drug model and physically encapsulated into polymeric micelles. The drug release of DOX-loaded polymeric micelles was pH-responsive; the drug-loaded micelles that had higher contents of tertiary amine in polymer pendant groups showed faster release speed. In addition, the drug-loaded micelles showed excellent inhibition efficacy against HeLa cells in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call