Abstract

Antimicrobial peptides (AMPs) have been attracting much attention due to their excellent antimicrobial efficiency and low rate in driving antimicrobial resistance (AMR), which has been increasing globally to alarming levels. Conjugation of AMPs into functional polymers not only preserves excellent antimicrobial activities but reduces the toxicity and offers more functionalities, which brings new insight toward developing multifunctional biomedical materials such as hydrogels, polymer vesicles, polymer micelles, and so forth. These nanomaterials have been exhibiting excellent antimicrobial activity against a broad spectrum of bacteria including multidrug-resistant (MDR) ones, high selectivity, and low cytotoxicity, suggesting promising potentials in wound dressing, implant coating, antibiofilm, tissue engineering, and so forth. This Perspective seeks to highlight the state-of-the-art strategy for the synthesis, self-assembly, and biomedical applications of AMP-polymer conjugates and explore the promising directions for future research ranging from synthetic strategies, multistage and stimuli-responsive antibacterial activities, antifungi applications, and potentials in elimination of inflammation during medical treatment. It also will provide perspectives on how to stem the remaining challenges and unresolved problems in combating bacteria, including MDR ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.