Abstract
Renal-clearable nanomedicines are considered the next generation of nanomedicines, and show potential application for future clinical translations. However, it is important to determine whether self-assembly can form large aggregates that accrue in tumors and then tailor the size of these assemblies to be excreted renally. In this paper, a renal-clearable nanomedicine based on quanterrylene bisimide-mannose conjugates (QDI-Man) was developed. QDI-Man showed a high renal clearance efficiency of 80.31 ± 2.85% in mice. We confirmed that the self-assembly of QDI-Man exhibited a dynamic adjustment process through the renal filtration thresholds, that is, "aggregation → self-regulating the aggregate size through the renal filtration thresholds → reaggregating into aggregates". Benefiting from the modification of mannose-based glycoclusters, QDI-Man showed selective photothermal therapy because of the mannose receptors overexpressed in breast cancer cells, and showed good photothermal therapy in mice. This paper developed a dynamic adjustment theory for effective renal clearance based on organic self-assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.