Abstract
Dioxane-type (9′-anthracenyl)methylene acetal of methyl 2,3-di-O-methyl-α-d-glucopyranoside was cleaved with LiAlH4/AlCl3 (3:1) or with Na(CN)BH3–HCl regioselectively to provide the 4- or 6-O-(9′-anthracenyl)methyl ether, respectively. Hydrogenolytic reaction of the exo and endo isomers of dioxolane-type acetals proved to be directed by the configuration of the acetalic carbon as well as by the intramolecular participation of the adjacent-free hydroxyl; ring-opening reaction of the endo isomer of the methyl 2,3-O-(9′-anthracenyl)methylene-α-l-rhamnopyranoside took place with complete selectivity resulting in the axial (9′-anthracenyl)methyl ether, whereas a 1:1 mixture of the axial and equatorial ethers was formed upon the same reaction of the exo isomer. Catalytic hydrogenation of the sugar acetals resulted in (9′,10′-dihydro-9′-anthracenyl)methylene derivatives without affecting the acetalic center. High-temperature molecular dynamics simulations and DFT (Density Functional Theory) geometry optimizations were carried out to study the conformation of the dioxane-type (9′,10′-dihydro-9′-anthracenyl)methylene acetal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.