Abstract

Silicon-containing compounds have been largely ignored in drug design and development, despite their potential to improve not only the potency but also the physicochemical and ADMET ( absorption, distribution, metabolism, excretion, toxicity) properties of drug-like candidates because of the unique characteristics of silicon. This deficiency is in large part attributable to a lack of general methods for synthesizing diverse organosilicon structures. Accordingly, a new building block strategy has been developed that diverges from traditional approaches to incorporation of silicon into drug candidates. Flexible, multi-gram-scale syntheses of silicon-containing tetrahydroquinoline and tetrahydroisoquinoline building blocks are described, along with methods by which diversely functionalized silicon-containing nitrogen heterocycles can be rapidly built using common reactions optimized to accommodate the properties of silicon. Furthermore, to better clarify the liabilities and advantages of silicon incorporation, select compounds and their carbon analogues were challenged in ADMET-focused biological studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.