Abstract

A new form of transparent condensed nanophase material of GaN was synthesized directly by ammono-thermal synthetic route. Nano-sized effects and thermal stability of that material were investigated through Raman scattering and infrared spectra. Compared with bulk GaN, we observed the Raman low-energy-shift of the phonon frequency of E2(high) and the transverse optical mode [E1(TO)], the infrared high-energy-shift of, ωT, and the variation of relative intensity IE2/E1(TO). These characteristics can be attributed to the existence of the interface effects and the vacancy of N in the GaN nanophase material. This material has a high thermal stability even at 900 °C as indicated through infrared and Raman spectral investigation of annealed samples of as-synthesized nanophase material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call