Abstract

Two new monomeric Cu(II) alkoxide complexes were prepared and fully characterized as models for intermediates in copper/radical mediated alcohol oxidation catalysis: Tp(tBuR)Cu(II)OCH2CF3 with Tp(tBu) = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate 1 or Tp(tBuMe) = hydro-tris(3-tert-butyl-5-methyl-pyrazol-1-yl)borate 2. These complexes were made as models for potential intermediates in enzymatic and synthetic catalytic cycles for alcohol oxidation. However, the alkoxide ligands are not readily oxidized by loss of H; instead, these complexes were found to be hydrogen atom acceptors. They oxidize the hydroxylamine TEMPOH, 2,4,6-tri-t-butylphenol, and 1,4-cyclohexadiene to the nitroxyl radical, phenoxyl radical, and benzene, with formation of HOCH2CF3 (TFE) and the Cu(I) complexes Tp(tBuR)Cu(I)-MeCN in dichloromethane/1% MeCN or 1/2 [Tp(tBuR)Cu(I)]2 in toluene. On the basis of thermodynamics and kinetics arguments, these reactions likely proceed through concerted proton-electron transfer mechanisms. Thermochemical analyses give lower limits for the "effective bond dissociation free energies (BDFE)" of the O-H bonds in 1/2[Tp(tBuR)Cu(I)]2 + TFE and upper limits for the free energies associated with alkoxide oxidations via hydrogen atom transfer (effective alkoxide α-C-H BDFEs). These values are summations of the free energies of multiple chemical steps, which include the energetically favorable formation of 1/2[Tp(tBuR)Cu(I)]2. The effective alkoxide α-C-H bonds are very weak, BDFE ≤ 38 ± 4 kcal mol(-1) for 1 and ≤44 ± 5 kcal mol(-1) for 2 (gas-phase estimates), because C-H homolysis is thermodynamically coupled to one electron transfer to Cu(II) as well as the favorable formation of the 1/2[Tp(tBuR)Cu(I)]2 dimer. Treating 1 with the H atom acceptor (t)Bu3ArO(•) did not result in the expected alkoxide oxidation to an aldehyde, but rather net 2,2,2-trifluoroethoxyl radical transfer occurred to generate an unusual 2-substituted dienone-ether product. Treating 2 with (t)Bu3ArO(•) gives no reaction, despite evidence that overall ligand oxidation and formation of 1/2[Tp(tBuMe)Cu(I)]2 is significantly exoergic. The origin of this lack of reactivity may be due to insufficient weakening of the alcohol α-C-H bond upon complexation to copper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.