Abstract

The sol-gel method was used to create N-doped TiO2. From the characterization results, it was found that N-doped TiO2 using Titanium(IV) ammonia solution and calcination tetraisopropoxide 600 K provided the most appropriate properties for acting as the photo catalyst can be use as inhibitor of GST. SEM, AFM and XRD results indicated that this N-doped TiO2 catalyst had high crystallinity because its titania precursor was simply hydrolyzed completely so no organic contents blocked initial phase construction. SEM and AFM results demonstrated that its surface morphology was spherical like fluffy powders. Moreover, with increasing calcination temperature, its anatase-to-rutile phase transformation was retarded by the incorporated nitrogen. Elemental Analysis and UV-Vis/DR results also suggested that nitrogen could be dormant in the TiO2 lattice with strong bonds, causing the effect on the band gap structure by adding energy states nearly valence band of TiO2. All of these properties enhanced the photocatalytic activity of N-doped TiO2 under visible light. Regarding the photocatalytic activity, N-doped TiO2 with ammonia solution of titanium(IV), calcinated 600 K Tetraisopropoxide succeeded in degrading glutathione-S-transferase (GST) enzymes, with the highest efficiency. However, its photocatalytic activity was drastically decreased when it was calcined at higher temperature. Additionally, the plausible mechanism was also proposed in case of photo degradation of antioxidant content based on two detected intermediates by The association between ln Co/C and photo degradation period (h).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call