Abstract

Octenyl succinic anhydride modified tamarind seed polysaccharides (OTSPs) with various degrees of substitution were first synthesized and characterized in this work. The structural, solid-state, solution and emulsifying properties of the OTSPs and the effect of the degree of substitution (DS) were investigated. The structural characterization confirmed the successful grafting of the OSA moiety into TSP and the chain extension of the OTSPs. The hydrophobicity of the modified polysaccharide molecules increased, the absolute value of the zeta potential increased, and the thermal stability decreased, which were positively or negatively correlated with the changes in DS. In contrast, the hydrolysis of polysaccharides in alkaline aqueous solution led to a decrease in molar mass and the rigidity of the molecules, which were not significantly related to DS. Particle size analysis showed that OTSPs tended to aggregate into relatively small agglomerates, which was confirmed by the results of morphological analysis. Most importantly, the instability indices of emulsions stabilized by TSP, arabic gum and OSA-starch were 0.521, 0.715, and 0.804, respectively, while for OTSPs this parameter was between 0.04 and 0.19 under the same conditions, indicating better physical stability of the OTSP-stabilized emulsions, especially for OTSP-30. Overall, OTSP has great potential as an emulsifier for oil-in-water emulsions, especially for emulsification and stabilization in food processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call