Abstract

The synthesis, photophysical characteristics, in vivo photosensitizing efficacy, human serum albumin (HSA) binding properties, and skin phototoxicity of some stable bacteriochlorins were investigated. The novel bacteriochlorins, obtained from chlorophyll-a, have long-wavelength absorptions in the range lambda max = 734-758 nm. Preferential migration of ethyl over methyl substituents among ketobacteriochlorins obtained in the pinacol-pinacolone rearrangements of vic-dihydroxybacteriochlorins was confirmed by NOE studies. The bacteriochlorins show relatively low fluorescence quantum yields. Among all the bacteriochlorins the triplet states were quenched by ground state molecular oxygen in a relatively similar manner, yielding comparable singlet oxygen quantum yields. In preliminary in vivo studies (DBA/2 mice, transplanted with SMT/F tumors), ketobacteriochlorins were found to be more photodynamically active than the related vic-dihydroxy analogues. Replacement of the methyl ester functionalities with di-tert-butylaspartic acids enhanced the in vivo efficacy. Site specific human serum albumin (HSA) binding studies indicated a direct correlation between the ability of the compound to bind to the diazepam binding site (albumin site II) and the in vivo photosensitizing efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call