Abstract

Beta-pyrrole-substituted porphyrin dyads connected by ethynyl linkage to N-butylcarbazole or triphenylamine donors are reported. Donor-π-acceptor type beta-substituted porphyrin dyads and their Zn(II) and Pd(II) complexes were characterized by MALDI-MS, NMR, UV-vis absorption, fluorescence and cyclic voltammetry techniques. The S1 emission dynamics were analyzed by time-resolved spectroscopy (TCSPC); dyads exhibited efficient energy transfer up to 93% from beta-donors (N-butylcarbazole or triphenylamine group) to the porphyrin core. The efficiency of energy transfer for the beta-substituted porphyrin dyads were much higher than those of the corresponding meso-substituted porphyrin dyads, reflecting enhanced communications between the beta-donors and the porphyrin core. The Pd(II) dyads, showed characteristic phosphorescence in the near IR region and very efficient singlet oxygen quantum yields (53-60%); these dyads are promising candidates for photocatalytic oxidations of organic compounds. The donor-acceptor interaction between the porphyrin core and the beta-donors was supported by the DFT studies in the porphyrin dyads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.