Abstract

A new phosphorescent iridium (III) complex based on 2-(4-tert-butylphenyl)-5-methylbenzo[d]oxazole as main ligand, i.e. bis(2-(4-tert-butylphenyl)-5-methylbenzo[d]oxazole-N,C2′)iridium(acetylacetonate) [(tmbo)2Ir(acac)], was synthesized for organic light-emitting diodes (OLEDs), and its photophysical, electrochemical and electroluminescent properties were investigated. The complex displayed strong phosphorescence emission, high decomposition temperature, short phosphorescent lifetime and reversible redox electrochemical behavior. The OLEDs based on (tmbo)2Ir(acac) as dopant emitter exhibited maximum luminance efficiency of 26.1cdA−1 and high luminance of 16,445cdm−2. Interestingly, highly doped device based on (tmbo)2Ir(acac) showed high efficiency with negligible roll-off under a wide range of driving current density, which was mainly attributed to the effect of bulky steric hindrance of multi-methyl groups on this complex and its short phosphorescent lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.