Abstract

Nanoscale SnO2, SnS2 and SnO2/SnS2 were synthesized by hydrothermal treatment method and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH) and UV–vis spectra. The photocatalytic activity of SnO2, SnS2 and SnO2/SnS2 were tested with Enrofloxacin antibiotic. The tetragonal and hexagonal SnO2 and SnS2 phase was confirmed through XRD, respectively. The photocatalytic results indicated that the SnO2/SnS2 enhanced the photocatalytic activity and could be effectively used as photocatalyst for degradation of Enrofloxacin antibiotic pollutant. The results of antibacterial experiment under visible light irradiation demonstrate that the SnO2/SnS2 nanocomposite exhibit enhanced antibacterial efficiency compared with pure SnO2 and SnS2. The antifungal activity of the nanoscale SnO2, SnS2 and SnO2/SnS2 against Candida albicans was assessed using the disc-diffusion susceptibility tests. It was seen that the antifungal activity of SnO2/SnS2 nanocomposite is higher than the pure SnO2 and SnS2 toward pathogenic C. albicans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call