Abstract

The present work describes the synthesis of iron oxide nanoparticles by thermal decomposition of Fe-precursors in argon and vacuum environments with control over particle size distribution, phase composition and the resulting magnetic properties. The Rietveld refinement analysis of X-ray diffraction data revealed the crystallinity as well the single-phase of γ-Fe2O3 nanoparticles prepared under vacuum, whereas the argon environment leads to the formation of multi-phase composition of γ-Fe2O3/Fe3O4 (90%) and wustite (10%). Synchrotron X-ray absorption near edge structure (XANES) indicates that the predominant phase in both samples is γ-Fe2O3, which is subsequently verified from the Mössbauer spectra. DC magnetic measurements indicate behavior typical of a superparamagnetic system validated by Mössbauer analysis. However, further investigation of ac susceptibility by typical Néel-Arrhenius and Vogel Fulcher magnetic models suggests an influence of interparticle interactions on the overall magnetic behavior of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.