Abstract

Abstract Ceramics with formula (1 − x )Pb(Zr 0.52 Ti 0.48 )O 3 – x (Bi 3.25 La 0.75 )Ti 3 O 12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.