Abstract

Zinc oxide (ZnO) nanowires with various morphologies are synthesized by the hydrothermal method on silicon substrates coated with ZnO thin films. The ZnO films are used as the seed layer and are prepared using the sol–gel technique. Experimental results demonstrate that the synthesis of ZnO nanowires is dependent on the crystalline properties of the ZnO seed-layer films. Sol concentration is the controlled parameter for the preparation of ZnO seed-layer films in this study. The ZnO films are found to have the hexagonal wurtzite structure with highly preferred growth along the c-axis at suitable sol concentrations. The vertically aligned ZnO nanowire arrays on the substrates are believed to be the result of the epitaxial growth of the ZnO seed layer. Scanning electron microscopy shows that nanowires with uniform distribution in length, diameter, and density are obtained. X-ray diffraction patterns clearly reveal that the ZnO nanowires are primarily grown along the c-axis direction. Transmission electron microscopy and selected-area electron diffraction measurements show that the nanowires have good crystalline properties. The well-aligned and high surface areas of the ZnO nanowires make them a potential candidate for applications in solar cells, field emission devices, and ultra-sensitive gas sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call