Abstract

A facile, low-temperature, and low-cost chemical route has been developed to prepare ZnO nanowire and nanosphere compound structures. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have systematically investigated the optical properties of the ZnO nanostructures by micro-Raman, photoluminescence, and transmission spectroscopy. The results demonstrate that the yielded ZnO nanostructures possess good optical quality with high light absorption. We have further successfully employed the obtained ZnO compound nanostructures in dye-sensitized solar cells. The light-to-electricity conversion results show that the compound nanostructure exhibits a significant enhancement of short-circuit current density due to the increased surface area and light scattering in the compound nanostructures. The present chemical route provides a simple way to synthesize various compound nanostructures with high surface area for nanodevice applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.